What is VCP?
The Value Context Protocol (VCP) is a standard for encoding user preferences, constraints, and context in a privacy-preserving format that AI systems can use to personalize responses without exposing sensitive information.
"Your context stays yours. Private reasons stay private."
Quick Start
1. Define a VCP Context
A VCP context contains your preferences, constraints, and privacy settings:
import type { VCPContext } from 'vcp';
const context: VCPContext = {
vcp_version: "1.0",
profile_id: "user_001",
// Reference a constitution (behavioral guidelines)
constitution: {
id: "learning-assistant",
version: "1.0",
persona: "godparent",
adherence: 3
},
// Public preferences - shared with all stakeholders
public_profile: {
goal: "learn_guitar",
experience: "beginner",
learning_style: "visual"
},
// Portable preferences - follow you across platforms
portable_preferences: {
noise_mode: "quiet_preferred",
session_length: "30_minutes",
budget_range: "low"
},
// Private context - influences AI but NEVER exposed
private_context: {
_note: "Values here shape recommendations but are never transmitted",
work_situation: "unemployed",
housing_situation: "living_with_parents"
}
}; 2. Encode to CSM-1 Token
The CSM-1 (Compact State Message) format is a human-readable token that encodes your context:
import { encodeContextToCSM1 } from 'vcp';
const token = encodeContextToCSM1(context);
// Output:
// VCP:1.0:user_001
// C:learning-assistant@1.0
// P:godparent:3
// G:learn_guitar:beginner:visual
// X:<i class="fa-solid fa-volume-xmark" aria-hidden="true"></i>quiet:<i class="fa-solid fa-coins" aria-hidden="true"></i>low:<i class="fa-solid fa-stopwatch" aria-hidden="true"></i>30minutes
// F:none
// S:<i class="fa-solid fa-lock" aria-hidden="true"></i>work|<i class="fa-solid fa-lock" aria-hidden="true"></i>housing 3. Share with Stakeholders
The token tells AI systems what they need to know, while keeping private details hidden:
| Line | Meaning | AI Sees |
|---|---|---|
G:learn_guitar:beginner:visual | Goal + skill level + style | Full detail |
X:quiet:low | Noise + budget constraints | Flags only |
S:work|housing | Private context exists | Categories only |
The AI knows that work and housing context influenced the recommendations, but not what that context is. This enables personalization without surveillance.
Key Concepts
Privacy Levels
- Public — Always shared (goals, experience level)
- Consent — Shared when you approve (specific preferences)
- Private — Never transmitted, only influences locally (sensitive reasons)
Constitutions
Constitutions define AI behavioral guidelines. They specify what an AI should prioritize, avoid, and how it should interact. VCP contexts reference constitutions to ensure consistent behavior.
Personas
Different interaction styles built into constitutions:
- Godparent — Nurturing, supportive, patient
- Sentinel — Cautious, protective, conservative
- Ambassador — Professional, diplomatic, balanced
- Anchor — Stable, grounding, realistic
- Nanny — Structured, directive, safe
Next Steps
- Core Concepts — Deep dive into VCP architecture
- CSM-1 Specification — Full token format reference
- Playground — Build tokens interactively